Matching Pursuit Analysis of Auditory Receptive Fields' Spectro-Temporal Properties
نویسندگان
چکیده
Gabor filters have long been proposed as models for spectro-temporal receptive fields (STRFs), with their specific spectral and temporal rate of modulation qualitatively replicating characteristics of STRF filters estimated from responses to auditory stimuli in physiological data. The present study builds on the Gabor-STRF model by proposing a methodology to quantitatively decompose STRFs into a set of optimally matched Gabor filters through matching pursuit, and by quantitatively evaluating spectral and temporal characteristics of STRFs in terms of the derived optimal Gabor-parameters. To summarize a neuron's spectro-temporal characteristics, we introduce a measure for the "diagonality," i.e., the extent to which an STRF exhibits spectro-temporal transients which cannot be factorized into a product of a spectral and a temporal modulation. With this methodology, it is shown that approximately half of 52 analyzed zebra finch STRFs can each be well approximated by a single Gabor or a linear combination of two Gabor filters. Moreover, the dominant Gabor functions tend to be oriented either in the spectral or in the temporal direction, with truly "diagonal" Gabor functions rarely being necessary for reconstruction of an STRF's main characteristics. As a toy example for the applicability of STRF and Gabor-STRF filters to auditory detection tasks, we use STRF filters as features in an automatic event detection task and compare them to idealized Gabor filters and mel-frequency cepstral coefficients (MFCCs). STRFs classify a set of six everyday sounds with an accuracy similar to reference Gabor features (94% recognition rate). Spectro-temporal STRF and Gabor features outperform reference spectral MFCCs in quiet and in low noise conditions (down to 0 dB signal to noise ratio).
منابع مشابه
Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
The spectro-temporal receptive field (STRF) is a model representation of the excitatory and inhibitory integration area of auditory neurons. Recently it has been used to study spectral and temporal aspects of monaural integration in auditory centers. Here we report the properties of monaural STRFs and the relationship between ipsi- and contralateral inputs to neurons of the central nucleus of c...
متن کاملIdealized Computational Models for Auditory Receptive Fields
We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequ...
متن کاملPrincipal components of auditory spectro-temporal receptive fields
More than two thousand auditory cortical spectro-temporal receptive fields (STRFs) of the ferret were analysed by Principal Component Analysis (PCA) to reveal their dominant properties. Results show that cortical levels of mammalian auditory processing enhance relatively low modulation spectral components of the signal around 3 Hz, using relatively broad spectral processing channels of the orde...
متن کاملNew variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.
The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of the spectro-tempor...
متن کاملScale-Space Theory for Auditory Signals
We show how the axiomatic structure of scale-space theory can be applied to the auditory domain and be used for deriving idealized models of auditory receptive fields via scale-space principles. For defining a time-frequency transformation of a purely temporal signal, it is shown that the scale-space framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel f...
متن کامل